
 

Study notes for Chapter Three of Solar Sailing: Technology, Dynamics, And Mission 

Applications by Colin R. McInnes 

 

pXXX.YY means page XXX, line YY. Making a guide is useful.   

 

p56.24  Does photon pressure inflate an unsupported sail at all, or does it just turn it 

into a streamer? 

 

p58.11  “m total solar sail sailcraft mass”, mass of sail plus support plus payload. 

      With sail assembly loading σS = mS/A, can also write eq.3.2 as  

a0 = 2ηPA/( mS + mP ).   

       

p58.43  Does not increasing sail area mean more than proportional increase in structure?  

Then mS is a function of sail area, and eq.3.3 gets more complicated.   

 

p59.17  Fig.3.1 is from eq.3.3.   

 

p59.40  From eq. 3.2, a0 = 2ηP/[σS +(mP/A)].  σS = (mS/A)].  From eq. 3.4 

 

Δa0 = (a0/σS)(ΔσS) = (2ηP)(-1)[σS+(mP/A)]
-2( ΔσS ) 

 

Δa0/a0 = (2ηP)(-1)[σS+(mP/A)]
-2 ΔσS  / {2ηP/[σS+(mP/A)]} = 

 

      = (-1)[σS+(mP/A)]
-2 ΔσS  [σS+(mP/A)] = (-1)

 ΔσS /[σS+(mP/A)] =    

 

      = (-1)(ΔσS /σS)/[σS/σS)+(mP/A)/σS)] =  (-1)(ΔσS /σS)/(1+(mP/A)/(mS/A))] =  

  
      =  (-1)(ΔσS /σS)/(1+(mP/(mS))] =  [-1/(1+(mP/(mS))] (ΔσS /σS) = eq. 3.5a.  
 

p60.01  Tab.3.1.  To caption add “155kg total mass, η = .85”.  From p14 8g/m2 is typical 

all up loading if a0 = 1.0 mm/s
2.  6g/m2 for sail and structure gives 60kg for 100m x 100m 

sail.  This is not the 1:2 payload:sail ratio used earlier.  Payload 55kg => sail 10g/m2.   

     Add columns:  

Assembly   Sail plus     payload     total      sailcraft  

Loading    structure     mass        mass       load 

σS g/mm
2    mass in kg    mP in kg    m in kg    σ in g/m

2      Λ1        Λ2       Λ3 

6            60           95          155        15.5        -0.39   -0.61   0.39 

4            40           115         155        15.5        -0.26   -0.74   0.26 

2            20           145         155        15.5        -0.13   -0.87   0.13 

 

p60.17  It is always true that  Λ1 = -Λ3, and that Λ1 + Λ2 = -1.   

 

p61.18  1 micron Mylar 1.3g/m^2 for ultralight airplane models.  They also use monolayer 

wing covering on the order of 10-3 g/m3.  See F1d Indoor Duration model aircraft, 

“watercasting” p62m.   

 

p61.34  Table 3.1.  Need example of ensile forces for 100m x 100m sail   

 

p61.43  Calculate areal density for a given required tensile strength.  I get Mylar 

barely beats Kapton, but both are well ahead of Lexan.  This assumes that thickness is 

determined by required strength and not minimum thickness attainable.  And assumes 

tensile strength is proportional to thickness.   

      Kapton(R) (2.82 g/m2) + Al (0.27 g/m2) + Cr (~0.1 g/m2) = 3.2 g/m2. 

 

p62.41  Is there a reflector alloy with high infrared emissivity, such that it emits more 

than accepts from Sol?  Snow is very reflective in visible, very black in IR, not much of 

a structural material.  Front emissivity is not zero.   

 

p62.44  “high density” in g/m2, not kg/m2.     

 

p63.01  Aluminium is aluminum in USofA, and can have areal density of 0.25 g/m2, per Eric 

Dexler.   



 

p63.35  Sail minimum distance from sun is 0.2 au = 42 RS unless α>0.   

     Mercury at 84 RS   =  0.4au.  cP = WT(RT/r)
2 hwere I have used subscript T instead of E.  

Note that r is distance from Sol, r~ is reflectivity.   

      Thermal emission from back of sail counters some of the photon pressure.   

 

p64.20  Per p63m, draw in the 520K line in fig.3.2.   

 

p65.11  After sail and substrate delaminate, how do they separate?  Photon pressure 

forces them against each other.  Evaporation on Sol side and resultant rocket 

acceleration may work better.   

After sail and substrate delaminate, does some structure become redundant?   

 

p66.05  How thick is a few hundred atoms?  For aluminum ~ 0.4 μm per layer, but at some 

point transparency is important.     

      IR hwiskers on front of sail as per p63b comment?   

 

p66.08  Can you stretch films in orbit to get thinner?  Zigzag ripstop.   

 

p66.40  A spar supported sail is under tension.  Hwy no ripstop needed?   

 

p67.19  Fig.3.5 Script “l” on diagram and Roman “l” of text should be the same character.    

Script l ≈ λIR/4 is length of radiator.  Replace “l” of eqs. with “script l”, move “a”, 

“b”, “c” out of drawing.  Hwat is importance of dimension “c”?   

 

p68.40  Diagonal pattern is an advantage during deployment, see p76m.   

 

p69.27  IKAROS from JAXA is a spinning square sail.   

 

p69.40  How does cross orienting layers eliminate thermal expansion?  Non-isotropic?   

 

p73.26  Rectangular sail with two spars DR/4 = (8A)
0.5/4 = (A/2)0.5  held apart by single 

spar twice as long also has area (DR/4)*(2 DR/4) = [(A/2)
0.5][2(A/2)0.5] = A, and there may 

be advantages for attaching sail to spar, or fabricating in space.   

 

p73.34  Eq. 3.9 does not signify.  The forces determine the mass, hwich is the important 

parameter.  Moment of inertia is a lesser parameter.  Forces first, then engineering, 

then compare.  McInnes does acknowledge this in bottom paragraph.   

 

p74.06 same argument as above for Eqs. 3.10 and 3.11, need to know forces and masses 

first.  Also, earlier sail mass and structure mass were assumed to be =~, so the former 

should not be left out, even tho it is similar for square and disc.   

 

p74.09,.19  Eqs. 3.10 &3.11 confirmed.  Eq. 3.12 has no use, as noted in following 

paragraph.   

 

p74.38  Number of spars is of little use, it is the structural mass that counts.   

 

p75.30  See above.  Even looking at area per spar length, if spars must be constant 

mass/length, the triangular or rectangular sail with spars set at 120o is more efficient.  

A = 0.1443 * (total spar length)^2 for triangle, 0.125 for square with crossed spars, or 

rectangle (double square) with spars at short ends and one connecting spar.  Again, see 

paragraph bottom of page 75.  McInnes’s eq. 3.14 compares sails of different total spar 

length and different area.  Eq.3.14, adding spars adds weight with very little more added 

area, but spars can be lighter.   

 

p76.13  The central post adds more weight but reduces mass of main spars.  Again, hwat 

are the forces on the sail, and how distributed?  Can the mast be used as a support for a 

steering vane?   

 

p76.39  The articulated boom with payload mass is different than the structural post 

above, and they may be incompatible if deployed on same side of sail.   

 



p77.40  Eq.3.16. ϕ is rotation CCW about +z, from +x to projection of line O- mp.   

 

p78.18  Fig. 3.13 is confusing.   

The diagonals of the sail are the x and y axes.   

z is perpendicular to x and y.  The unit vectors e1, e2, and e3 are along the three axes.   

S is line from Sol, and makes pitch angle α with z axis, hwich is on the  

      Sol side of the sail.  S is parallel to unit vector u, and is not  

      The same s as fig. 2.7.  S is usually arriving on the +z side of  

      the sail, but is shown that way in drawing for simplicity. 

mp is mass of payload, a distance l from origin, and the vector from  

      origin to mp is rp and is not shown in figure.   

Θ is angle between rp and the x-y plane, and is projected onto that plane.   

ϕ is angle between that projection and the x-axis.   

n is direction of all resultant forces f, and since this is a perfect sail  

      the net force direction is same as the –z axis.  m = n in the notation  

      of fig. 2.7.  n makes angle α with z.   

d is spar length.   

δ1 and δ2 are rotations about the x-axis, measured from the –z axis to  

      the vane normals n1 and n2.   

 

p78.24  mS (mass of sailcraft) has its center of mass at origin, symmetry.   

rC = (mPrP + mSrS)/(mP + mS) but rS = 0.   

      Add [ and ] to “of radius [mP/(mP + mS)]l.” 

      (S∙n)2 = cos2α.  Put eq. 3.16 into eq. 3.17.  e3 // to –n, so Mz = 0.  

 

p79.12  No torque on main sail hwen edgewise mean you cannot stop sail in edgewise 

orientation, but try with vanes.   

 

p79.41  Control vanes, back to fig. 3.13.  δs are rotation angles of n1 and n2, unit 

vectors normal to vanes, perpendicular to x-axis with δ = 0 hwen they are parallel to n = 

-z^.  Rotation is clockwise hwen seen from origin.  Distance of vane from origin is d.   

 

p80.43  At elevation of 90o, torque is zero (the back horizontal line).  Label azimuth 

with 0, 90, 180, 270, 360 along with instead of 100, 200, 300.   

 

p81.02  di are distances from corner to sailcraft center of mass, excluding payload.   

 

p81.10  eq. 3.23bc .  Could not derive these.   

 

p81.31  Hwy is roll a problem unless it becomes too much?  It does mean changing 

orientation for controlling pitch and yaw.   

      How about control vanes on the central post.  Shadow?   

      Need always to sense direction to Sol, and know current v and desired change.  How 

do vane sizes change with increase in sail size to maintain roll authority?  Moment arm 

gets longer.   

 

p82.41  Graphs are a bit confusing.  Move labels to different edges of cube?   

 

p83.39  “in plane chordwise”, does this mean bending by stretching one side of the blade?   

Blades must start at some r>0, but over 7500 meters 2 is almost zero.   

 

p83.41  Change “between” to “among”.   

 

p84.31  Ω is around axis that is perpendicular to page.  x is distance from centerline of 

blade to blade element.   

 

p84.39  eq.3.24ab  Here f is force density, N/m3, not force.  Multiply by hC∆r.  This 

convention propagates thru the chapter.   

 

p85.03  In eqs.3.25ab, the hC (cross sectional area) top and bottom cancel.   

 

p85.16  “small displacements” means pressure is essentially constant.  Give example of 

deriving net Pn   



p85.25  dw/dx =0 or ∂w/∂x = 0?  Does it make a difference?   

 

p85.27  Using  the coning angle (bend along the blade, I think) (really slope across 

blade)  ≡ dw/dr, Eq. 3.28 becomes d(σr)/dr + Pn/h = 0.  I integrate this to  

(σr) + ∫Pn/h dr = constant assumed to be zero, with limits of integration from r to R so 

that Eq. 3.29 reads  = -(1/σr)∫Pn/h dr, with the minus sign.  Substituting using Eq. 

3.26a gives  

 = -(2/ρΩ2(R2-r2))∫Pn/h dr  = -(2/ρΩ
2(R2-r2))(Pn/h)(R-r) =   

 -(2/ρΩ2(R+r))(Pn/h) =  -(2Pn/(ρhΩ
2(R+r)).  I think.  The minus sign just changes the 

direction up or down.   

 

p85.41  In eq. 3.30 dw/dr ≡ (R) is 5 x 10-4 so it is indeed small.   

 

p86.21  Fig. 3.18  The dashed line is for a straight blade set at the coning angle of the 

root.  The actual blade flattens out because there is less net torque from the pressure 

of photons as you go out, and the centripetal force takes over.  Think about this.  Hwat 

does the caption mean? 

 

p86.32  To get eq. 3.32, integrate eq. 3.30 from 0 to r.  Still missing minus sign?  Then 

w(R) = w(7500m) = 2.25m, less than chord.   

 

p86.43  How to derive eq. 3.33.  Confusion from definition changes of w and θ.  

Revelation.  w is still vertical motion, but the new theta is not italicized.  Now there 

can be progress.   θ   

     Starting with eq. 3.27, multiply by hx, substitute for σx (eq. 3.26b) and for w using 

w = θx (p86b).   

 

Since it is assumed that θ does not depend on x (blade is flat, p86b), ∂θx/∂x is θ.  And 

since x is independent of r, in the first term x can come out of the differential.  Take 

the partial of the second term wrt x, noting that the first part of the second term is a 

constant.  Then integrate from –C/2 to +C/2, substitute for the inertia of the cross 

section about the central axis (eq. 3.34a) and on the rite side using 3.34b (hwy is this 

the twisting moment?) to get eq. 3.33.   

 

1  Start with eq. 3.27  

2  multiply by hx and rearrange   

3  substitute for  w = θx p86b and  σx(x) = (ρΩ
2/2)((C/2)2-x2) eq. 3.26a 

4  Assuming that θ does not depend on x (blade is flat, p86b), ∂θx/∂x is θ.   

5  Take derivative of second term  

6  Integrate from –C/2 to C/2  with RHS from eq.3.34b 

7  Evaluate limits   

8  Substitute for (C3h/12) using eq. 3.34a to get eq. 3.33. 

 

1           (/r)[σr(w/r)] + (/x)[σx(w/x)]                   + (Pn/h) = 0    

2         hx(/r)[σr(w/r)] + hx(/x)[σx(w/x)]               + hx(Pn/h) = 0 

3        hx(/r)[σr(θx/r)] + hx(/x)[ (ρΩ
2/2)((C/2)2-x2)(θx/x)] + x(Pn) = 0 

4        hx2(/r)[σr(θ/r)] + hx(/x)[ (ρΩ
2/2)((C/2)2-x2)θ)]      + x(Pn)  = 0  

5        hx2(/r)[σr(θ/r)] + hx      [ (ρΩ
2/2)( ( -2x ) θ)]      + x(Pn)  = 0  

6  x3<lim>(h/3)(/r)[σr(θ/r)] - x
3<lim>(hρΩ2θ/3)                 +  tθ     = 0 

7     (C3h/12) (/r)[σr(θ/r)] - (C
3h/12) (ρΩ2θ)                  +  tθ    = 0 

8            (/r)[Iσr(θ/r)]  - (ρΩ
2Iθ)                         +  tθ    = 0 

 

p87.21  Fig. 3.19  note that left axis, θ(r)/θ(0), does not start at zero. I think this 

is from solving eq. 3.35 as a first order differential equation in ∂θ/∂r.  If the root 

twist θ is three degrees, then the tip twist will be a bit more than one degree.   
 

p87.24  I is around central axis.   

 

p87.37  From eq. 3.33 using eq. 3.26b (I think) and tθ = 0 (photon pressure balances) to 

get eq.3.35. tθ in eq.e.34b has wrong units, should be an R before Pn in RHS.  Explain in 

detail.  ******* 



 

p87.37  Deriving eq. 3.35.  In eq. 3.33 set t0 = 0 and use eq. 3.26a to substitute for σr.  

(/r)[(ρ/2)Ω2(R2-r2)(θ/r)] = ρΩ2θ.  Cancel,  

(/r)[(R2-r2)(θ/r)] = 2θ.  Take partials   

(-2r)(θ/r) + (R2-r2)(2θ/r2)] = 2θ so (R2-r2)(2θ/r2) - (2r)(θ/r) - 2θ = 0. 

Now solve it.  See Wolfram Mathworld Second Order Ordinary Differential Equation.  

According to fig. 3.19 a linear approximation is possible.   

 

p88.01  Table 3.4 Change caption to “Required root torque M0 in Nm for a 7.6μm thick x 1m 

x 300m heliogyro blade.”  Label the LH column with θ0.  The table comes from eq. 3.37 and 

shows nine values of M0 for different root twists and spins.  Recalculating:   

 

Table 3.4.  Required root torque M0 in Nm for a 7.6μm thick x 1m x 300m heliogyro blade. 

Blade root   Root torque: Root torque: Root torque: 

Pitch angle  Ω = 0.2 rpm  Ω = 0.3 rpm  Ω = 0.5 rpm   

θ0 deg (rad)   0.02094 rad/s 0.03142 rad/s 0.05236 rad/s   

10o  (.1745)  .657 x 1o-5  Nm 1.48 x 1o-5  Nm 4.10 x 1o-5  Nm  

20o  (.3491)  1.31 x 1o-5  Nm 2.95 x 1o-5  Nm 8.21 x 1o-5  Nm  

30o  (.5236)  1.97 x 1o-5  Nm 4.43 x 1o-5  Nm   12.31 x 1o-5  Nm  

Note:  My torques are 0.526 of the book’s numbers.  Cannot explain the discrepancy.   

 

p88.12  Suspect I do not understand eqs.3.36 and 3.37.  Used these values for table: 

      ρKapton = 1420 kg/m
3           density of Kapton p61 

          C = 1.00 meters         blade width 

          h = 7.6 x 10-6 meters      blade thickness 

          I = 6.333 x 10-7 m3         (1/12)C3h   

          R = 300 meters      blade length 

         θ0  = in radians           blade twist at root 

          Ω = in radians/sec  spin rate about hub 

         θR  = 0.364 Θ0 radians      blade twist at end, p87b   

   σ0 = (ρ/2)Ω
2(R2-02)  p85 eq.3.26a 

     (θ/r) ~ θ0(1-0.364)/300 rad/m (θ0 - θR)/R radians/m average twist per unit length 

                                    over entire blade. (θ/r)~ 0.636/300 = 2.120 x 10-3/m. 

<Using fig.3.19 and graphically finding the slope at 

the root of ~-1.1, (θ/r)~ 1.1/300 = 3.7 x 10-3/m.  
Then my torques would be ~ 0.9 of book’s torques.> 

Then Eq.3.36 is  

        M0 = Iσ0(θ/r)|r=0   

= I(ρ/2)Ω2(R2)(θ/r)|r=0   

  = (6.333 x 10-7 m3)(ρ/2 kg/m3)Ω2(300m)2 (θ02.120 x 10
-3/m)  

Eq.3.37 = (1.208 m5)(ρ/2 kg/m3)(Ω/s)2 θ0 hwich does have units (m)(kg m/s
2), torque.   

      In the equation, the inputs are Ω in radians/sec, and θ0 in radians.  In the table 

the inputs in rpm must be multiplied by 0.10472 to get radians/second, and inputs in 

degrees must be multiplied by .017453 to get radians.   

 

p88.43  With a change in blade root twist, how long does it take for twist to propagate 

to the end, and is there overshoot?  Damping?   

     Hwat is reference direction for angles in Fig. 3.20?   

 

p89.17  Fig.3.20  Sol line is coming out of page.  Per p88.38, Sol is on axis so torque 

in fig.3.20b is out of page.  Fig.3.20a is pure cyclic.  Only half the sail area 

contributes to lateral force.  Is anything gained by rotating other two blades so net 

force is along diagonal?  For fig.3.20b see eq. 3.40.  This tilts axis off sun line, or 

back onto it.    

 

p89.36  Suppose center of mass is not on axis of heliogyro?  

        Stack several shorter heliogyros for shorter blades but same area.  But then they 

could bump each other during precessing.  With sufficient separation, no bumps, but one 

set could shade another, thereby changing the lightness number β.  Another way to 

transition between spiral and circle.   

     With heliogyro, can the sail axis always be pointed toward sol?  Yes, if blades not 

at ideal setting only during short maneuvers.   



 

p90.09  “disc solar sail uses spin ...”.  So did square IKAROS.   

p90.14  Is hoop needed if payload can be attached to center without stays?  Weird during 

changes of α.  Combine heliogyro with payload on arm.   

       

p90.16  “payload . . . at centre of disc”, better “payload on axis of disc”.   

        Payload is attached to the hoop by shrouds, point compression loads.     

 

p90.28  I think you get compression along circumference of hoop by integrating T0 along a 

half circle, same way you get hoop tension in a barrel.   

     From hwere do eqs.3.41 and 3.42 come?  Google “vibrating flat things”.  Tension in 

N/m, not /m2.  In eq.3.42, tension at r = 0 is infinite, nuts to that.  If spin rate is 

huge?  Even with hoop, spin to reduce billowing.     

 

p91.01  Fig. 3.22 should be here and not on next page.   

      

p91.17  Hwat happens if radius of hoop is smaller than R of sail radius?  There should be 

less billowing within, but hwat about sail outside of ring?  From heliogyro seems 

billowing OK for moderate sail spin.  Could have several rings, and shroud to sail center 

as well.   

 

p91.26  Instead of counter-rotating disc, use disc sail inside ring sail.  

     Orbital rates change with time, so precession must also.    

 

p92.41  Replace collimating mirror with flat directing mirror.  Reflected light is now 

spread into cone, less efficient but less mass and control problems.  Center of mass / 

center of effort problem.  Temperature of secondary mirrors gets high.     

 

p93.17  Fig 3.23  As drawn, the director mirror angle is inconsistent with reflection 

angle.  Note reversed arrowhead to left of “Director”.  n bisects fi and fr.  Should n be 

replaced with m?  No, perfect reflectors.  Is n perpendicular to the directing mirror?  

Need inset with directing mirror, fi, α, n, α, fr.  

 

p93.18  Text assumes sol line is same as sail axis.  Does this affect argument?  Torques?  

Does center of force change with mirror angle?  Required size of reflecting mirror 

changes with maximum deflection angle.   

 

p95.14  Consider rectangular collector with parabolic cross section, trough collimator 

and director.   

 

p94.18  Fig.3.24.  Hwat is typical operational α?  Secondary mirror α = 45o maximizes 

tangential thrust.   

 

p95.17. Add “β” to “lightness number β of order unity.”   

     

p96.17  Put dots for HPSS and μ-SS on graph.   

 

p96.19  Table 3.5.  Λ1 Λ2 Λ3  are sensitivity constants see p59.40.   

        Put symbols  A m msail mstructure mp a0 σ σS and η = .85 onto Tab.3.5. 

 

p96.44  “perforations can reduce the sail mass by an order of magnitude”.  Without 

changing sail thickness, sail becomes a net, one that is mostly holes.  See fig. 3.5 p67.   

 

p97.07  Add “β” to “sail lightness numbers β of order 10”.   

 

p100.30 To Tab.3.6 add rows for β and η. 

 

p102.37  “Marmon clamp” properly “Marman clamp” from MARx MANufacturing, a band clamp 

often with explosive release. The Marx Brothers.  

 


