
Study notes for Chapter Four of Solar Sailing: Technology, Dynamics, and Mission 

Applications by Colin R. McInnes                    last edit 2016 March 25 MBM   

 

pXXX.YY means page XXX, line YY. Making a guide is useful.   

 

p112.29  “crank” means to change orbit inclination.  p21.14 

 

p113.03+ Logarithmic spiral trajectories can be made useful by patching them to planetary 

circles using intermediate ellipses.  See addendum.     

 

p113m  Hamilton-Jacobi method 

 

p113.33  Eq. 4.1 should be R = (Mr1 + mr2)/(M + m).  Compute d
2R/dt2 and use below.   

 

p113.43  Below “(4.2b)” should read “adding” not “subtracting”.   

 

p114.22  Think more about inertial reference frames. Does not momentum of reflected light 

balance momentum change of sail?   

 

p114.42  Approximation μ ≈ GM is used on the RHS of eq. 4.6 and afterward.      

 

p115.06  Some confusion is introduce in the text.  The cone angle θ is between Sol line 

r^ and the net force m.  The pitch angle α is between r^ and n. Since the discussion is 

for a perfect sail, m = n and θ = α.  The equations use α but text uses cone instead of 

pitch.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p115.23  “maximize the component”  still leaves residual forces in other directions.   

 

p115.44  Fig.4.2 assumes perfect reflector.  Clock angle δ is rotation of n about r 

measured from reference p^ perpendicular to orbit plane.  δ is in p^ and p^ X r^ plane, 

fig. 4.2 should make this clear.   

         Because this is a perfect reflector the cone angle θ = pitch angle = α, measured 

between n and r.   

Figure 4.2 page 115  

 
Cone angle θ = pitch angle α because 
this is a perfect sail.  
Clock angle  δ  is in the plane   
perpendicular to Sol line, and at lower 
left that is the  plane of the page.    
δ is between  p^  in the plane and the 
projection of n onto that plane.   
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p116.03  Eq. 4.9 is eq. 2.20 with ui = r^.  Dot this with q^.   

 

p116.07  In eq.4.10 set δ = δ~  <note tilda> so cos(δ-δ~)=1.  Then dot product of f with 

q gives force along q:  fq = eq.4.10’ = f[cos(α)cos(α~)+sin(α)sin(α~)]. To maximize the 

force against q use the negative root.  The required cone angle is now 90-(angle with 

positive root).  See p138.    

 

p116.18  Can also write eq.4.12’ tanα* = [-3cos(α~) + √[9cos2(α~)+8sin2(α~)]/4sin(α~).   

 

p116.44  In fig.4.3, label vertical axis with α* and horizontal with (α~).  Using new 

eq.4.12 extend graph to left to -90o for negative required cone (pitch) angle (α~). 

  

p117.16  In fig.4.4 note that q can point below horizontal.  f assumes a perfect sail.  

Add notation for fq, with the arrow point at the perpendicular along q.   

 

p117.38  In fig.4.5, label horizontal axis with α and run from -90o to +90o, vertical axis 

with f/2PA.  Put in numeric values for transverse peak at (35.26o = atan(1/√2).   

     Radial force is always positive, and symmetric around α = 0 (and around α  = 90 if 

sail is reflective both sides).  Transverse is negative (to the right) for α < 0.  Total 

force is root of squares, and so always positive.   

 

p117.40  From. Fig.4.3.  Add α and α~ to “sail cone angle α is limited to has a maximum 

of approximately 35o as the required cone angle α~ reaches 90o.”  After 90o the back side 

of sail is turning toward Sol.   

 

p118.14  In fig.4.6, ɤ (Aries) designates a reference direction, hwere θ is zero.  Angle 

θ is in plane of ecliptic, measured from ɤ.  ϕ is vertical angle measured from ecliptic 

to sailcraft position vector r.  At the sailcraft, r^, θ^, and ϕ^ seem to correspond to  

r^, p^ X r^, and p from fig.4.2.    

 

p118.17  Add α~ and α* to “As the required cone angle α~ increases there is a sail cone 

angle α* which ...”   

     Again, sometimes it is not the transverse force hwich must be maximized, so α~ may 

be other than 90o.   

     “From eq. (4.12) it ...α~ = 90o the”, since tan90o = ∞ it is easier to use the 

alternate eq. 4.12’ to see that the limit as (α~) -> 90o is 1/√2 ≈ 35.264.  Radial force 

goes as cos3, transverse as cos2sin per eq. 4.10.  

 

p118.35  “using eq.4.7 it is found that ...”  Arrange eq. 4.6 to  

 

Eq. 4.6’  d2r/dt2 = (-μ/r2)r^ + (βμ/r2)(r^•n)2n.   

 

     Note (r^•n) = cosα.  Put this and n from eq.4.7 into eq 4.6’: 

 

d2r/dt2 = (-μ/r2)r^ +(βμ/r2)(cosα)2[(cosα)r^ +(sinα)(cosδ)p^ +(sinα)(sinδ)(p^ X r^)] 

 

     Consolidate, noting p^ is ϕ^ and (p^ X r^) is θ^ 

 

d2r/dt2 = [(-μ/r2) + (βμ/r2)(cosα)3]r^ + [(βμ/r2)(cosα)2(sinα)(sinδ)]θ^ +  

 

         +[(βμ/r2)(cosα)2(sinα)(cosδ)]ϕ^.   

 

     These are the RHS of eqs. 4.13abc.   

     The LHS of eqs. 4.13abc is d2r/dt2, with some confusion over ϕ measured from the 

polar axis or from the central plane.  The confusion causes an interchange of (sinϕ) and 

(cosϕ), sometimes with a change of sign from taking a derivative.  See Wolfram Mathworld.  

Also note r^/r =0, r^/θ = (sinϕ)θ^ et cetera.   

 

       eq. 4.13a, from eq. 4.6 equate coefficients of r^, 

       eq. 4.13b, from eq. 4.6 equate coefficients of θ^, 

       eq. 4.13a, from eq. 4.6 equate coefficients of ϕ^. 

 



p118.37  On RHS of eq.4.13a move exponent. (cos3α).   

p118.40  On RHS of eq.4.13b move exponent. (cos2α).   

p118.42  On RHS of eq.4.13c move exponent. (cos2α).   

 

p119.15  In fig.4.7,  

ɤ (Aries) is a reference direction in the plane of the ecliptic.  

i is tilt of sailcraft orbit relative to ecliptic plane.   

N and N’ are ascending and descending nodes hwere orbit crosses elliptic plane.     

A is aphelion distance.   

P is perihelion distance.  A and P are on the orbital ellipse and collinear with Sol.   

Ω is longitude of A, measured along ecliptic from ɤ to N. 

ω is argument of perihelion measured from N to P.   

r is vector from Sol to sailcraft.   

f is true anomaly, angle along orbit from P to sailcraft’s position r.  

S, T, and W are radial, transverse, and crank force components on sailcraft 

       From these we get   

p119.43  a = (rA + rP)/2.   

p119.44  e = (rA-rP)/(rA+rP).   

p120.19  p = a(1 – e2) semi-latus rectum.   

         μ = G(M+m), gravitational parameter.    

         n = √(μ/a3) mean motion or period 

         τ = time of perihelion passage  

         t = time sailcraft is at r. 

         M = n(t-τ) mean anomaly 

      See diagram in ELLIPSE EQUATIONS. 

 

p120.23  On RHS of eq.4.15a move exponent. (cos3α).   

p120.26  On RHS of eq.4.15b move exponent. (cos2α).   

p120.27  On RHS of eq.4.15c move exponent. (cos2α).   

        S, T, and W are forces, implicitly per unit mass, as are many values.   

 

p120.35  “equinoctial” means WRT celestial equator co-ordinates.    

 

p121.20  “nett” is British for “net”.   

 

p121.30   eq.4.16 is eq.4.6 with n=r^.   

 

p122.02   In eq.4.19 T is now orbital period, and not parameter from p120.25.   

 

p122.15   In eq.4.20b, E is energy per unit mass.   

 

p122.20ff  The things that look like karp symbols are just < and > 

 

p123.21   Label parabolic orbit (β = 1/2) and hyperbolic orbits (β > 1/2).     

 

p123.24  “positive effective solar gravity” means repulsive force.   

 

p123.30   Add “eq. 4.17 and” to “Therefore using eq.(4.17) and eq.(4.19) it”.   

 

p121.33   eq.4.23 comes from eq.4.19 with a = r = constant since the orbit is circular, 

and using u~ = u(1-β).   

 

p123.35   “decoupled” means period also depends on β instead of just on r.   

  

p124.21   In fig.5.9, the hatched lines mean there are no curves below the curve labeled 

β = 0.  The lower dashed line shows the 25 day rotation of Sol.   

 

p124.44  Altho the text refers to R as being one au, in the rest of sec. 4.3.2.3. and 

sect 4.3.2.3 R is radius of any initial circular orbit.   

 

p125.17   Change ΔV to ΔvS to be consistent with eq.4.34.  The sail is jettisoned at 

aphelion r before the impulse resulting in addition ΔvS.  r becomes new circular distance.     

 



p125.37   eq.4.28a  semi-major axis a = (R + r)/2.   

    

p125.39   eq.4.28b  r is aphelion distance for outer planets, or perihelion distance if 

you leave circular orbit radius R and apply vS to slow sailcraft.  Jettison at r, and 

that is now the new circular distance.   

 

p125.43   eq.4.29  e = 1 – ((1-2)/(1-β) = β/(1-β).   

 

       Label “sail jettison” and “apogee impulse”.  Note that semi-major axis of 

connecting Hohmann orbit is a = (r1 + r2)/2.     

 

p125m  Per normal Newtonian mechanics, the speed2 of the furled sail in circular orbit at 

radius r1 is μ r1.  This is also the speed
2 of the deployed sail in elliptical orbit with 

perihelion r1 and effective gravitational parameter μ~.  In eq. 4.20a substitute r1 for r 

on the RHS, and equate the two speeds.  This is eq. 4.26.   

       a is the semi-major axis of the new orbit.  To get eq. 4.27, solve for a and use 

eq. 4.17 μ~ = μ(1-β) to replace μ~.  Cancel μ.   

 

p125b  Eq. 4/29 reduces to e = β/(1-β), hwich should be added to the text.   

 

p126.2   Change “Then using eq.(4.28b), the aphelion ...” to “Then dividing eq.(4.28b) by 

eq. (4.28a) and re-arranging, the aphelion ...” 

 

p126.29  Change paragraph after eq. 4.33 from “Finally, the Δv required ...” to “Finally, 

the delta vee required ...”  

 

p126.33  Sail speed at aphelion  

vA
2 =  [μ(1-β)][(2/r) - 1/((R+r)/2))] =  

   =  [μ(1-β)][(2/r) – (2/(R+r)))] =         Using eq.4.32 β = (r-R)/(2r) 

   = 2[μ(1-β)][R+r -r] = 2[μ(1-(r-R))][R+r -r] = 2[μ(2r-(r-R))][R+r -r] 

              [r(R+r)]         (2r)   [r(R+r)]         (2r)    [r(R+r)] 

 

   = [μ(r+R))][R]_____ = [μ][R]  so vS = √{([μ/r][R/r]} . Since at r, vcirc √{[μ/r]}       

        (r)   [r(R+r)]   (r)[r] 

 

ΔvS = vcirc – vA = √{[μ/r]} - √{[μ/r][R/r]} = √{[μ/r]}{1 - √{[R/r]} finally, eq.4.34 

 

       [(1/r) – (1/(R+r)))].  ) 

   = 2[μ(2/2 -(r-R)/(2r)][(1/r) – (1/(R+r)))]   

   =  [μ(2   -(r-R)/( r)][(1/r) – (1/(R+r)))]   

   =  [μ(2r/r- (r-R)/(r)][(1/r) – (1/(R+r)))]   

 

   Moving outward, sail and structure are dropped before applying impulse ΔvS.  If moving 

inward, the impulse is applied at aphelion of the transfer ellipse, and must accelerate 

sail and structure as well as payload.  Jettison sail at perihelion.    

 

      Differentiate 4.34 wrt R, set equal to zero, with result r = 4R, so the solar sail 

has a maximum ΔvS at 4 au as shown in fig. 4.11a.  Hohmann orbit has max at 15.58R, best 

found numerically.   

 

p127.22  In fig.4.11, R = 1 au, Terra orbit.  Label Hohmann maximum at 15.58 au and sail 

maximum at 4R.  “Final Orbit” in r au.  Add rMars = 1.52 au, rCeres = 2.76 au, rJupiter = 5.20 

au, rSaturn =9.54. rUranus = 19.18 au.   

 

p127.34  Still need engineering comparisons between two impulse Hohmann orbit and sail 

with single impulse.  Trade payload mass against launch weight.     

 

p127.42  “nett” is British, “net” American.   

 

p127.43   Replace “remove” with “offset”.   

 

p128.18  In practice sailcraft drops toward Sol, and sets sail at perihelion speed rather 

than first going to circular orbit.   



 

 

p129.20  In fig.4.12, label parabolic and linear orbits.   

 

p130.04  “Hyperbolic excess” refers to the speed a body on escape trajectory would have 

at infinity.  For a parabola, hyperbolic excess is zero.  For a hyperbola it will be 

greater than zero.   

     Note bene:  it is possible to go from circular orbit to logarithmic spiral or vice 

versa using just the sail, with no impulse required.  Orbits are patched, not matched.  

See notes in appendix.   

 

p130.12  “clock angle δ of 90°” is from fig. 4.2 p115 not fig.4.6.  (Compare with ϕ = 0 

fig. 4.6 p118)  It means staying in the same plane, and cone angle α (sun direction to 

net force, p130, perfect reflector, text p90) is the same as pitch angle (sun direction 

to net force same as sail normal).   

 

p130.18   eq.4.37a should start d2r/dt2 = ...  , not d2r/dr2.   

 

p130.20   In eq. 4.37b, move exponent to cos2α.  It comes from eq. 4.13b with δ = 90o on 

RHS and ϕ = 0 on LHS.   

 

p130.25   Insert “a” in “pitch angle α, a particular”   

      

p130.40   In eq.4.40a, on RHS, exponent of cosine should be three:  cos3α.  

          To derive eq.4.40a, start with eq. 4.47b,  

        r(d2θ/dt2) + 2(dr/dt)(dθ/dt) = (βμ/r2)(cosα)2(sinα)   substitute with eq. 4.39a 

r(d2θ/dt2) + 2(r(tanγ)(dθ/dt)(dθ/dt) = (βμ/r2)(cosα)2(sinα)  4.40b’ 

 r[(d2θ/dt2) +  2(tanγ)(dθ/dt)2     ] = (βμ/r2)(cosα)2(sinα) eq.4.40b.   

 

p131.14   In fig. 4.13, McInnes labels the angle γ as the flight angle between θ^ and v,  

hwile angle between v and r is zenith angle.  Others use γ as zenith angle and ϕ as 

flight angle.   

 

p131.20   Combine corrected eqs.4.40.  Multiply 4.40b’ by (tanγ), then subtract4.40a’ 

 

 4.40b r(d2θ/dt2)(tanγ) + 2r(dθ/dt)2)(tanγ)2            = (βμ/r2)(cos2α)(sinα)(tanγ)  

-4.40a r(d2θ/dt2)(tanγ) +  r(dθ/dt)2)(tanγ)2 – r(dθ/dt) = (βμ/r2)(cos3α) - (μ/r2) 

         r(dθ/dt2)(tan2γ) + r(dθ/dt)2 = (βμ/r2)(cos2α)[(sinα)(tanγ)-(cosα)] + (μ/r2) 

 

         r(dθ/dt2)(tan2γ) + r(dθ/dt)2 = (μ/r2){β(cos2α)[(sinα)(tanγ)-(cosα)] + 1} 

 

         r(dθ/dt2)(tan2γ) + r(dθ/dt)2 = (μ/r2){1 - β(cos2α))[(cosα) - (sinα)(tanγ)]} 

 

         r(dθ/dt2)[(tan2γ) + 1] = (μ/r2){1 - β(cos2α))[(cosα) - (sinα)(tanγ)]} 

 

          r3(dθ/dt2)[1/(cos2γ)] = (μ){1 - β(cos2α))[(cosα) - (sinα)(tanγ)]} 

 

  4.41               r3(dθ/dt2) = (μ){1 - β(cos2α))[(cosα) - (sinα)(tanγ)]}(cos2γ) 

   

      Over an entire orbit, eq.4.41 is r3/(2π/T)2 = constant, indeed Kepler-like.   

 

p131.25  Removing the dot notation, vθ = r(dθ/dt).  Then 

 

p131.28  Eq4.42  vθ = r(dθ/dt) = √(eq.4.41/r).    

       

p131.33  Removing the dot notation, and using eq.4.39a, and then eq.4.42 so that  

vr = (dr/dt) = (tanγ)r(dθ/dt) = (tanγ)vθ  =  eq.4.43. 

 

p131.40  To get eq.4.44, add squares of eqs.4.42 and 4.43, take root.      

 

p131.42  Still need to show v(r) < vcircular.   

 



p132.20   Fig.4.14  add α to horizontal axis and γ to vertical axis.  Add line for β = 

0.99.  If sin γ = √(2/3)the lines “cross” at about (26o, 55o) with β ≈ 0.58.  For β < 0.58 

there exist γ such that there do not exist α for hwich eq. 4.45 is true.  For β > 0.58 

there exist α such that there do not exist γ for hwich eq. 4.45 is true.  

 

p132.25   Change to ”between among” α,β,γ”.  γ is flexible vis a vis α.   

 

p132.28  Hwence comes eq.4.45?  I need help.  It has max on LHS hwen  

cosγ = 1/√3, or γ = 54.74°. Then max LHS = √2/4 = 0.35355.  With this LHS β has a maximum 

at cos2α = (24 + √657)/81, or α = 26.106.   

     Multiplying the LHS of eq.4.45 by (1/cos2γ)/(1/cos2γ) and using the trig identity  

(tan2γ) + 1 = (1/cos2γ) makes the transformation to  

eq.4.45’  (tanγ)/[2+(tan2γ)] = β(cos2α)(sinα)/[1- β(cos3α)].  This is quadratic in (tanγ), 

and the solution can be substituted into eqs.4.41 and .44 so that they are functions only 

of α and β.  Use negative tangent for inbound, positive tangent for outbound.   

 

p132.42  Put (1-βcos3α) from eq.4.45 into eq.4.43 after distributing the βcos2α, use 

Δvr=dr/dt, and separate variables to get eq.4.46.   

 

p133.03  Derive eq.4.47.  α and γ are constant.  1/tanγ = cotγ, et cetera.  It works.   

 

p133.09  “Since eq.4.45 is implicit ...” Explicit, see note p132.28.   

 

p133.13  From the above, the approximation of eq.4.48 is not needed.   

 

p133.30  Eq. 4.51 should have 2/cos3α* and not 2/cos2α, and that took way to much effort 

to establish.  Thank you, ErinK. Can solve for β in terms of (cosα*) by multiplying top 

and bottom by cos2α 

          β = (2/(cos3α*))[ (cos2α*) – 2(sin2α*)    ]/[2(cos2α*) – (sin2α*)    ] = 

            = (2/(cos3α*))[ (cos2α*) – 2(1-(cos2α*))]/[2(cos2α*) – (1 - cos2α*)] = 

            = (2/(cos3α*))[3(cos2α*) – 2            ]/[3(cos
2α*) –  1          ] = 

                        = [6(cos
2α*) – 4            ]/[3(cos5α*) – (cos3α*)    ] = 

 

p133.31  “may be solved numerically ...”  As long as a numerical solution is needed, 

substitute for tanγ in eq.4.47 and solve that numerically.   

 

p133.39   “significant increase” if transferring between circular and logarithmic orbits 

with an impulse and not patching intermediate ellipses.   

 

p134.20  Add α, β, and γ to fig.4.15.   

 

p134.23  Tab.4.2.  Lots of misprints.  Note that α0 = βGM/rT
2 = 5.931β, a0 in mm/s 

Table 4.2 

Β Hohmann β = 0.05 β = 0.10 β = 0.125 β = 0.15 β = 0.20 

a0     mm/s2 -     0.297     0.593     0.741     0.890   1.186 

α      deg -   34.98   34.68   34.52   34.36 34.01 

γ      deg -     2.27     4.67     5.93     7.24 9.99 

T      days 259. 873.8 430.1 341.2. 281.8 207.3 

Δv1   km/s     2.95     1.23     2.44         3.09     3.76 5.17 

Δv2   km/s     2.65     1.00     1.98     2.50     3.04 4.19 

ΔvT   km/s     5.60     2.241     4.42     5.59     6.80 9.36 
 

 

For β>~0.125, ΔvT > ΔvH .  Huh? Less efficiency from extra push?  Part of the impulse goes 

to cancel the orbital velocity, hugely inefficient, and part goes to change direction, 

even worse.  In section4.3.2.3  β=0.1711 reaches Mars with Δv2 = 7 km/s, still bad.  

Alternatively, set α = zero, then α =90o, and then to α of the spiral.  It takes good 

timing to patch orbits, but takes no (rocket) impulse.  Travel times are much longer.  

See appendix.   

     A Hohmann orbit is optimized for rockets with minimum impulse, hwilst spiral is 

optimized for simple steering law, flight angle γ.  Apples and oranges.   



 

p134.42 “insensitive to small variations in sail pitch angle”.  Add “around optimum of 

35.xx°”.   

 

p135.20  To fig.4.16, add α and T to axes.  Add lines for β>0.15.  β=0.05 is off top of 

graph.   

 

p135.44  Add monthly tic marks to fig.4.17.  Add β = 0.05 to caption.  See pp16,17 

 

p136.19  Again, sail can be used to enter spiral.  Either with patching ellipses, or the 

optimized steering laws discussed later.   

 

p137.04  Eq.4.53  f is true anomaly, f is vector function of S,T,W.  S,T,W are the force 

coefficients per unit mass: S out from sun, T traverse to sun in orbital plane, and W 

perpendicular to orbit.  W = 0 for in-plane maneuvers.  Z is an orbital element from 

p120: a e i Ω ω t.  The λs are the coefficients of S,T,W from p120t eq.4.14.  For 

example, from eq.4.14b, λ(e) is [(r2/μ)sinf,(r2/μ)(1+r/p)+(r2/μ)(re/p),0]. 

 

p137.19  Add α and e to line beginning “For changes to ...”.   

       If remaining in the orbital plane, δ~ = π/2.   

 

p137.44  Add perpendiculars from λ to axes in fig. 4.18.   

 

p138.03  Compare eq.4.56a with eq.4.12.  Here and in spiral orbit calculations the tanα~ 

version works best, as one wants to go from augmenting the velocity to diminishing it as 

the flight angle γ goes from positive to negative.  (α~ goes from <90 to >90.  Eq.4.56a, 

note lack of +/- before radical 

 

p138.08  “osculating orbital elements”, Same position and direction.   

   

p138.28  Misprint, leave off “tan” in eq.4.58a.  ~α  = π/2 and = 0,π because desired 

direction is perpendicular to orbital plane.   

 

p138b  Eq.4.59a is from eq.4.57.  f is in plane of orbit since δ~ = π/2. 

 

p139.7  “common scaling factors S, T, and W” of the coefficients, here (2r2)/(μ(1-e2)2) 

from eq.4.14a.  λ is parallel to v at least in this case hwere we are changing a, so α* + 

γ = 90o, not as shown in fig. 4.18.   

 

p139.17  How does two body problem imply eq.4.64?  Many following equations use the 

substitutions p/r = 1+ecosf and p = a(1-e2). 

 

p139.36  add β to “lightness number β of 0.05”.  Compare this to β used to develop force 

model in earlier chapter.  Orbit number is f/2π, not inverse of that.   

      

p140ff   Emphasize that in Figs.4.19-21 graphs start at 1 au, e = 0.2.  In Figs.4.19-24 β 

= 0.05 

 

p140.33  Fig.4.19c has flat top as require α≤35˚ for operational reasons.   

         Fig.4.19d.  Initial orbit is offset circle, not ellipse, sloppy.   

 

p141.09  Argument of perihelion ω p119t.  Are ω and Ω changing so that f’s reference 

direction is changing?  This could be awkward.   

 

p141.26  optimum sail cone angle is again α* of eq. 4.56a.   

 

p142.33  In fig.4.20, part of the time eccentricity is decreasing.  Hwat if sail goes 

edge on during this part of the orbit?     

 

p144.10  Eq.4.70b works if -π/2 < (f+ω) < π/2  

         Eq.4.70b and eq.4.71 δ* runs from 0 to π, not from –π to +π.  See fig.xxxxx 

 



p144.29  From p120 eq.4.14c, max change in I happens hwen f+ω=0 or π (cos  = +/- 1).  But 

physically, hwy should force affecting inclination at cosf=0 be zero?  Eq.4.71 comes from 

putting eq.4.15c into eq.4.14c (p120) with δ* a function of f as in eq.4.70b, and e=0 

means r=p.  Integrating over 2π (eq.4.72), ω is an irrelevant phase shift, but I think it 

should be left in eq.4.71.    

 

p144.33  to get eq.4.72, cosδ* is from eq.4.70b.  Is not brightness number β important 

for distant orbits?   

       If tan α* = 1/√2, sin α* = 1/√3, cos α* = √2/√3.  Putting these values into 

eq.4.73 gives Δi = 4β 2/3 1/√3 = 1.54β ≈ 88β°/orbit. 

 

p144.44  Add “diminishing” to “diminishes with diminishing orbit radius” 

 

P145.35 Fig.4.22d is looking at fig.4.22c from along x-axis (back rite face).   

 

p147.35  Fig.4.24 covers 14 orbits, fig.4.22 only seven.  Prefer seven.   

 

p147.40   Eq.4.78 is eq.4.77 with substitutions and multiplied by 180/π. 

 

P148.28  Eq.4.79b is from eq.4.6.  Dot notation for /dt is inconsistent with earlier 

usage, and confusing.   

 

p148.34-44  co-states?  I am lost.  Hamiltonian.   

 

p148.40  eq.4.80.  Should subscript in second term on RHS be pr and  not pv? 

 

p149.04-06  Hwence eqs.4.81ab?  Replace dot notation with d/dt.   

 

p149.10   Eq.4.82 makes sense if ∂/∂r (pv + pr + n + r + r) = (0+0+0+1+r^), except pr•r 

should be pv•r, I think.  And how do the time derivations fit in?  Chain rule?   

 

p149.32  Transversality condition?   

 

p150.25  Fig.4.25.  Hwy does return take longer?  Should not orbits be symmetric?  

Perhaps the total of waiting time at Mars and the return trip time that is minimized.   

 

p151.06  Hwy go past Mars orbit? In the simplest case, start in circular orbit R with 

furled sail.  Speed V0 = √{μ/R}.  Now set sail of lightness number β, with pitch angle α = 

0.  The circular speed is now VS = = √{μ(1-β)/R} < V0.   The sailcraft is at perihelion 

and so must move outward.  For other α the radial push still outweighs the transverse 

push.  Arriving at Mars is the mirror image of this maneuver.   

 

p151.12  Section 4.4.  At the expense of some blank paper, it would be nice to have 

equations an figures all on the same page spread.   

 

p151.35  Add a0 to “sail characteristic acceleration a0”.  l is now Solline vector and r 

is used for planet-centered vector.   

       Negligible air drag at heights >900 km above Terra surface.   

 

p152.02  Need more discussion of third body effects.   

 

p152.19  Discussion assumes that initial orbit is in ecliptic.  Is there an inclination 

between zero and π/2 that is more efficient than either of the extremes?   

 

p152.44  Fig.4.26  Sol is to left, so show Terra sunlit on left side.  Orbit starts with 

f = 0 on the far side of Terra from Sol.  Add two more sails at Terra face on to Sol at  

f = 0 and f = π.  Add normal n to each sail.   

 

p153.07  e ≈ 0 so p ≈ a, r ≈ a.  Hwat else changes besides a and e?  ω?   

       From here on S,T,W are called acceleration.  On p120 they are called  forces, with 

“per unit mass” assumed.   

 

p153.14  κ is a constant that depends on specific conditions.   



 

p153.26  Note the conditions that carry on thru this section.  However, the delta vee to 

go from LEO to GEO is more than the delta vee to go from LEO to escape.  In practice the 

sail would start from GEO only if catching a ride from another craft going to that orbit.   

     If there is insufficient delta vee to escape, go for the elliptical orbit with 

minimum safe perigee and maximum apogee.  Orient ellipse so that perigee is at π/2, and 

sailcraft can spend most of the time face-on to Sol.  See p158.25.  

 

p154.33  Fig.4.27 refers to Section 4.2.2.1 on previous pages.   

         Fig.4.27a  Top of scale should be 45,000, not 43,000.   

         Fig.4.27d  Sol is on left, lighten half of Terra.  f = 0 is (39000km, 0km). 

 

 

p155.17  In fig.4.28, θ should be f for consistency.  Sol at left, Terra sunny, add sail 

normals. To be consistent with fig.4.28 and the 180o flip, eq.4.92 should reflect 

f =   0(π/4)  1(π/4)  2(π/4)  3(π/4)  4(π/4)  5(π/4) 6(π/4)  7(π/4)  8(π/4)   

α =   2(π/8)  3(π/8)  4(π/8)   

                     -4(π/8) -3(π/8) -2(π/8) -1(π/8) 0(π/8)  1(π/8)  2(π/8)   

 

p155.22  Eq.4.93  Same problems with flip.     

 

p156.42  To go from LHS eq.4.95 to eq.4.96, take time derivative on RHS of eq. 4.96, then 

multiply rite term by r/r.  Since r is parallel dr/dt, rdr/dt = rdr/dt = rdr/dt cos0 = 

r•dr.    

 

p157.16  Fig.4.30  Sol on left, sunlit Terra, show l (sunline), and α between l and n 

(sail normal).  Angle f should not be bold.  Add α to figure. Refers to sect4.4.2.  Looks 

very similar to fig.4.28, but compare tilt of sail at f = 0 and f = π.  

 

p157.21  Eq.4.96 requires r perpendicular to v, approximately true here.   

 

p157.23  add per unit mass “orbit energy per unit mass E”.   

 

p157.39-43  It is tediously true that eq.4.100 solves eq.4.99.  Both can be transformed 

to cosψ(3cosαsinα)=sinψ(1+3sin2α), with α* indicating optimum.   

 

p158.4  Eq.4.101 probably follows from  eq.4.100, eq.4.15b, and fig. 4.30.   

 

p158.25  If GTO is properly aligned, it has the advantage of requiring just enuf apogee 

kick energy for the sail to avoid air drag at perigee.  Or, use the energy needed to go 

from GTO to Clarke orbit to maximize the apogee.  If sail is going into Sol at perigee, 

it spends so little time there that apogee is barely reduced.  This is the simplest 

steering law.  Better (less time to escape) is a steering law to increase apogee hwenever 

possible.  See note p153.26.   

 

p160.18  Fig.4.32  Sol to left, Terra needs half-light.   

 

p160.35  Fig.4.33  Sol is above page shining down.  Terra should be fully lit.   

 

p161.33  Fig.4.34d  Sol is shining down on page.  Terra should be fully lit.   

 

p161.38  Eq.4.106 depends on e≈0 so that r≈a.  This ignores the force component moving 

orbit plane out-Sol from Terra’s center of mass.   

 

p162.12  eq.4.107 and eq.4.108 from eq.4.14a and eq.4.103.   

 

p162.40  In tab.4.3, Δa is per orbit.   

 

p163.13  There is no sec.4.4.4.3.  Must mean sec.4.4.2.3.   

 

p164.11  Eq.4.111.  da/dt = (da/df)(df/dt).  P = 2π √{a3/μ}.  f changes by 2π radians in P 

seconds.  df/dt = 2π/P = √{μ/a3}.  

 



p164.25  Eq.4.114  6371 km = rT. 

 

p165.21  In fig.4.35 the diagonal lines are labeled with height above Terra’s surface at 

6371 km.   

 

p165.37  T & V are energy per unit mass.   

 

p166.20  Eq.4.117 derives messily from eq.4.116.  

 

p166.29-34    ξ˙=dξ/dt etc.  ? 

 

p166.37  H=T+V is consistent with eq.4.119.   

 

p167.05  Eq4.120 etc.  I’m lost.   

 

p168.18  Fig.4.37 has Sol to left.  Light on Terra disc.  Put in parabolic envelopes 

(plural?) mentioned p168m.  f = 0 starts at (42421km, 0).   

 

p169.14.  Compare initial equatorial, ecliptic, and polar orbits attainable for the same 

launch delta-vee and mass.  Then look at time to raise to escape.   

 


